Word Level Font-to-Font Image Translation using Convolutional Recurrent Generative Adversarial Networks
نویسندگان
چکیده
Conversion of one font to another font is very useful in real life applications. In this paper, we propose a Convolutional Recurrent Generative model to solve the word level font transfer problem. Our network is able to convert the font style of any printed text images from its current font to the required font. The network is trained end-to-end for the complete word images. Thus, it eliminates the necessary pre-processing steps, like character segmentations. We extend our model to conditional setting that helps to learn one-to-many mapping function. We employ a novel convolutional recurrent model architecture in the Generator that efficiently deals with the word images of arbitrary width. It also helps to maintain the consistency of the final images after concatenating the generated image patches of target font. Besides, the Generator and the Discriminator network, we employ a Classification network to classify the generated word images of converted font style to their subsequent font categories. Most of the earlier works related to image translation are performed on square images. Our proposed architecture is the first work which can handle images of varying widths. Word images generally have varying width depending on the number of characters present. Hence, we test our model on a synthetically generated font dataset. We compare our method with some of the state-of-the-art methods for image translation. The superior performance of our network on the same dataset proves the ability of our model to learn the font
منابع مشابه
Improvement of generative adversarial networks for automatic text-to-image generation
This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...
متن کاملGenerating images with recurrent adversarial networks
Gatys et al. (2015) showed that optimizing pixels to match features in a convolutional network with respect reference image features is a way to render images of high visual quality. We show that unrolling this gradient-based optimization yields a recurrent computation that creates images by incrementally adding onto a visual “canvas”. We propose a recurrent generative model inspired by this vi...
متن کاملLanguage Generation with Recurrent Generative Adversarial Networks without Pre-training
Generative Adversarial Networks (GANs) have shown great promise recently in image generation. Training GANs for text generation has proven to be more difficult, because of the non-differentiable nature of generating text with recurrent neural networks. Consequently, past work has either resorted to pre-training with maximumlikelihood or used convolutional networks for generation. In this work, ...
متن کاملDA-GAN: Instance-level Image Translation by Deep Attention Generative Adversarial Networks (with Supplementary Materials)
Unsupervised image translation, which aims in translating two independent sets of images, is challenging in discovering the correct correspondences without paired data. Existing works build upon Generative Adversarial Network (GAN) such that the distribution of the translated images are indistinguishable from the distribution of the target set. However, such set-level constraints cannot learn t...
متن کاملText Generation using Generative Adversarial Training
Generative models reduce the need of acquiring laborious labeling for the dataset. Text generation techniques can be applied for improving language models, machine translation, summarization, and captioning. This project experiments on different recurrent neural network models to build generative adversarial networks for generating texts from noise. The trained generator is capable of producing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.07156 شماره
صفحات -
تاریخ انتشار 2018